<h2>
Answer: Infrared light</h2>
A dark nebula is a cloud of dust and cold gas, which does not emit visible light and hides the stars it contains.
These types of nebulae are composed mainly of the hydrogen they obtain from nearby stars, which is their fuel.
It is using infrared light that we can "observe" and analyze in detail what happens in the inner parts of these nebulae.
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Answer:
<h3>62.5N</h3>
Explanation:
The pressure at one end of the piston is equal to the pressure on the second piston.
Pressure = Force/Area
F1/A1 = F2/A2
Given
F1 = 250N
A1 = 2.0m²
A2 = 0.5m²
F2 = ?
Substituting the given values in the formula;
250/2 = F2/0.5
cross multiply
250*0.5 = 2F2
125 = 2F2
F2 = 125/2
F2 = 62.5N
Hence the force needed to lift this piston if the area of the second piston is 0.5 m^2 is 62.5N
Answer:
The child represented by a star on the outside path.
Explanation: