13) b=145 because a line equals 180° so you subtract 35° from 180°
14) b=61 because it as right angle so 90 minus 29 equals 61
15) b= 23 because 360 is a full circle so you add 243 and 94 and get 337 then subtract 337 from 360
16)b=131 because you subtract 49 from 180
17) b=90 because you subtract 90 from 180
18) b=73 because of vertical angles
Answer:
You are m + 1 years old.
Step-by-step explanation:
Let's say that you are x years old, and Mack is m years old.
x = 1/2( two plus twice m)
x = 1/2(2 + 2m)
x = 1 + m
x = m + 1
Hope this helps!
Answer: <less than >greater than ≥ greater than or equal to ≤ less than or equal to
Step-by-step explanation:
Answer:
<h3>
ln (e^2 + 1) - (e+ 1)</h3>
Step-by-step explanation:
Given f(x) = ln and g(x) = e^x + 1 to get f(g(2))-g(f(e)), we need to first find the composite function f(g(x)) and g(f(x)).
For f(g(x));
f(g(x)) = f(e^x + 1)
substitute x for e^x + 1 in f(x)
f(g(x)) = ln (e^x + 1)
f(g(2)) = ln (e^2 + 1)
For g(f(x));
g(f(x)) = g(ln x)
substitute x for ln x in g(x)
g(f(x)) = e^lnx + 1
g(f(x)) = x+1
g(f(e)) = e+1
f(g(2))-g(f(e)) = ln (e^2 + 1) - (e+ 1)
Answers:
y = 50
angle AOB = 100
=========================================
Explanation:
Angle x is an inscribed angle that subtends or cuts off minor arc AB. This is the shortest distance from A to B along the circle's edge.
Angle y is also an inscribed angle that cuts off the same minor arc AB. Therefore, it is the same measure as angle x. We can drag point D anywhere you want, and angle y will still be an inscribed angle and still be the same measure as x.
-------------------
Point O is the center of the circle. This is because "circle O" is named by its center point.
Angle AOB is considered a central angle as its vertex point is the center of the circle.
Because AOB cuts off minor arc AB, and it's a central angle, it must be twice that of the inscribed angle that cuts off the same arc.
This is the inscribed angle theorem.
Using this theorem, we can say the following
central angle = 2*(inscribed angle)
angle AOB = 2*(angle x)
angle AOB = 2*50
angle AOB = 100 degrees