Complete question is;
A 21 ft ladder is leaning against a tall wall with the foot of the ladder placed at 7 feet from the base of the wall and the angle of elevation is?
Answer:
θ = 70.5°
Step-by-step explanation:
The angle of elevation simply means the angle that the ladder makes with the ground. Let's call this angle θ.
I've attached a diagram showing the triangle made by this ladder and the wall.
From the attached diagram, we can see the triangle formed by the ladder and the wall.
We can find the angle of elevation θ from trigonometric ratios.
Thus;
7/21 = cos θ
cos θ = 0.3333
θ = cos^(-1) 0.3333
θ = 70.5°
Answer:
its 70 and 58
Step-by-step explanation:
The pattern: -2, -4, -6, -8, -10, -12...
Assume ladder length is 14 ft and that the top end of the ladder is 5 feet above the ground.
Find the distance the bottom of the ladder is from the base of the wall.
Picture a right triangle with hypotenuse 14 feet and that the side opposite the angle is h. Then sin theta = h / 14, or theta = arcsin 5/14. theta is
0.365 radian. Then the dist. of the bot. of the lad. from the base of the wall is
14cos theta = 14cos 0.365 rad = 13.08 feet. This does not seem reasonable; the ladder would fall if it were already that close to the ground.
Ensure that y ou have copied this problem accurately from the original.
The scenario described above is like dividing a right cone from the vertex down to the center for the base. The polygon that can be formed from the division or in this case slicing is a triangle. Thus, the answer to this item is letter B.
Answer:
A
Step-by-step explanation:
hope it helps