In an ionic bond, electrons are transferred from one stone to another atom (shared).
Answer:
Ionic compound are when electrons are given to another element, making one atom positive and the other negative, so they attract. Covalent compound is when both atoms share electrons with each other.
Answer:
The right answer is B) evaporation
Explanation:
Transpiration occurs at the leaf surface which is the loss of water due to the evaporation. This phenomenon works as trigger of water and mineral movement above to the xylem. Due to the evaporation of water at the leaf, negative pressure is created at the surface of leaf. Tension is produced which results in the pull of water from roots up to the xylem vessels.
Answer:
D. C > B >A
Hope it helps!
Explanation:
From strongest to weakest, the intermolecular forces rank in the following way:
Strongest: Hydrogen bonding. This occurs when compounds contain #"O"-"H"# , #"N"-"H"# , or #"F"-"H"# bonds. ...
Less strong: Dipole-dipole forces. ...
Weakest: London Dispersion Forces.
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)