Answer:
Freezing point is -2.81°C
Explanation:
34g/342gmol^-1 = 0.0994mol
n = m/mr
Molarity= 0.994/ 0.66 = 1.51M
◇T = -i × m ×Kf
Where ◇T is freezing depression
i= Vant Hoff factor
m = molarity
Kf = freezing content = 1.
860kgmol^-1
◇T =-1 × 1.51 × 1.860 = - 2.81°C
Answer:
Increasing the temperature will cause chemical changes to occur faster. Decreasing the temperature, causes the particles to lose energy which causes them to move around less and slower. The less they move, the less collisions occur, and the less reactions occur between the chemicals = slower reaction rate.
Explanation:
I just know the ph is between 7 and 8
Answer:
Option 6 ) Neutralization
Explanation:
For this case, the missing coefficient would be a "6" before the H₂O, within final products (right side of the equiation), hence, the final reaction should be:
2H₃PO₄ + 3Ba(OH)₂ ------> Ba₃(PO₄)₂ + 6H₂O
You should have in mind that the amount of atoms at each side of the chemical equation should be the same, so as to comply with the principle of mass conservation. If you add "6" on the left side of the H₂O, the equation will be balanced (for each side, lef and right, you will have: 12H, 2P, 14O and 3Ba)
Lastly, this is a chemical neutralization reaction, where an acid (H₃PO₄) is reacting with a base (Ba(OH)₂) in order to finally obtain a neutral salt (Ba₃(PO₄)₂) and water (H₂O)
5.367 ml of the concentrated acid must be added to obtain a total volume of 100 ml of the dilute solution.
Dilution is defined as the process in which the concentration of a sample is decreased by adding more solvent. The dilution formula is given below.
C₁V₁ = C₂V₂
where C₁ = initial concentration of sample = 3.00 m
V₁ = initial volume of sample
C₂ = final concentration after dilution = 0.161 m
V₂ = total final volume after dilution = 100 ml
Plug in the values to the formula and solve for the volume of the concentrated acid that must be added.
C₁V₁ = C₂V₂
3.00 m (V₁) = 0.161 m (100 ml)
V₁ = 5.367 ml
Learn more about dilution here: brainly.com/question/1615979
#SPJ4