Answer:
4.4g
Explanation:
Mass of CaCO3 = 10g
Mass of CaO = 5.6g
Mass of CO2 =?
Mass of CaCO3 = Mass of CaO + Mass of CO2
Mass of CO2 = Mass of CaCO3 — Mass of CaO
Mass of CO2 = 10 — 5.6
Mass of CO2 = 4.4g
Protons = 20
Electron = 20
Neutrons = 20
Hope this Helps :)
Answer:
26.0 g/mol is the molar mass of the gas
Explanation:
We have to combine density data with the Ideal Gases Law equation to solve this:
P . V = n . R .T
Let's convert the pressure mmHg to atm by a rule of three:
760 mmHg ____ 1 atm
752 mmHg ____ (752 . 1)/760 = 0.989 atm
In density we know that 1 L, occupies 1.053 grams of gas, but we don't know the moles.
Moles = Mass / molar mass.
We can replace density data as this in the equation:
0.989 atm . 1L = (1.053 g / x ) . 0.082 L.atm/mol.K . 298K
(0.989 atm . 1L) / (0.082 L.atm/mol.K . 298K) = 1.053 g / x
0.0405 mol = 1.053 g / x
x = 1.053 g / 0.0405 mol = 26 g/mol
Answer: Option (3) is the correct answer.
Explanation:
When there is a negative charge on an atom then we add the charge with the number of electrons. Whereas when there is a positive charge on an atom then we subtract the charge from the number of electrons.
Atomic number of chlorine is 17. So, number of electrons present in
is 17 + 1 = 18 electrons.
Atomic number of cobalt is 27. So, number of electrons present in
is 27 - 4 = 23 electrons.
Atomic number of iron is 26. So, number of electrons present in
is 26 - 2 = 24 electrons.
Atomic number of vanadium is 23. So, number of electrons present in V is 23 electrons.
Atomic number of scandium is 21. So, number of electrons present in
is 21 + 2 = 23 electrons.
Thus, we can conclude that out of the given species,
has the greatest number of electrons.
Answer:Increase the enzyme concentration
Explanation:
If the enzyme is saturated, it simply means that all the enzyme molecules present has been bound to substrates.
Of course, there will still be more substrates left in the system since the enzyme is saturated. The reaction rate can now be increased by increasing the enzyme concentration so that more enzyme molecules can be bound to substrates.