Answer:
1058.78 ft/sec
Explanation:
Horizontal Component of Velocity; This is the velocity of a body that act on the horizontal axis. I.e Velocity along x-axis
The horizontal velocity of a body can be calculated as shown below.\
Vh = Vcos∅.......................... Equation 1
Where Vh = horizontal component of the velocity, V = The velocity acting between the horizontal and the vertical axis, ∅ = Angle the velocity make with the horizontal.
Given: V = 1178 ft/sec, ∅ = 26°
Substitute into equation 1
Vh = 1178cos26
Vh = 1178(0.8988)
Vh = 1058.78 ft/sec
Hence the horizontal component of the velocity = 1058.78 ft/sec
Answer:
The material with higher modulus will stretch less than
The material with lower modulus
Explanation:
A material with a higher modulus is stiffer and has better resistance to deformation. The modulus is defined as the force per unit area required to produce a deformation or in other words the ratio of stress to strain.
E= stress/stain
Hooks law states that provided the elastic limit is not exceeded the extension e of a spring is directly proportional to the load or force attached
F=ke
Where k is the constant which gives the measure of the spring under tension
Newton's second law of motion pertains to the behavior of objects for which all existing forces are not balanced. The second law states that the acceleration of an object is dependent upon two variables - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.