The answer is B (The second one). I'm not sure though.
The electromagnetic spectrum is the system of frequencies that show electromagnetic radiation, respective wavelengths, and photon energies. Some examples of frequencies found on the electromagnetic spectrum are radio waves, microwaves, infrared, optical, ultraviolet, X-rays, and gamma-rays.
Answer:
0.25 L
Explanation:
= Initial pressure = 1 atm
= Initial Temperature = 20 °C
= Initial volume = 4.91 L
= Final pressure = 5.2 atm
= Final Temperature = -196 °C
= Final volume
From ideal gas law we have

The pressure experienced by the balloon is 0.25 L
Answer:
The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
Explanation:
Given that,
Energy E = 2 eV
Barrier V₀= 5.0 eV
Width = 1.00 nm
We need to calculate the value of 
Using formula of 

Put the value into the formula


(a). We need to calculate the tunnel probability for width 0.5 nm
Using formula of tunnel barrier

Put the value into the formula


(b). We need to calculate the tunnel probability for width 1.00 nm


Hence, The tunnel probability for 0.5 nm and 1.00 nm are
and
respectively.
mass of the ball m = 0.63 kg
initial height h = 1.8 m
final height h ' = 3.03 m
initial speed v = 7.09 m / s
final speed v ' = 4.21 m / s
Let the work done on the ball by air resistance W = ?
we know from law of conservation of energy ,
total energy at height h + work done by air = total energy at height h '
mgh + ( 1/ 2) mv^ 2 + W = mgh ' + ( 1/ 2) mv'^ 2
0.630*9.8*1.8 + 0.63*7.09^2 + W = mgh ' + ( 1/ 2) mv'^ 2
From there you can find W
if there is negative sign indicates it work opposite direction to motion