Answer:
The order of increasing energy is as follows
"microwave < infrared < visible < ultraviolet"
Option (A) is correct.
Explanation:
Given:
Arrange the following spectral regions in order of increasing energy: infrared, microwave, ultraviolet, visible.
From the formula of energy in terms of frequency.

Where
planck constant,
frequency of light.
From above formula we can conclude that higher frequency means higher energy.
In our case ultraviolet has higher frequency and microwave has lower frequency.
So ultraviolet has higher energy and microwave has lower energy.
microwave < infrared < visible < ultraviolet
Therefore, the order of increasing energy is as follows
"microwave < infrared < visible < ultraviolet"
The part of a river that would have animals with muscular bodies and adaptations that let survive in turbulent water is in the transition zone, the mid-transition zone to be precise.
Water at the source zone possesses a lot of potential energy and as it flows from the upper reaches the potential energy is turned into kinetic energy when the course of the river begins to gradually level out and this translates into increase in velocity. By the time river water reaches the middle of the transition zone, most of the potential energy would have been turned into kinetic energy and thus water velocity would be quite high here.
Animals living here would develop muscles because of constantly fighting against the strong current to avoid being swept downstream.
Answer:
We conclude that the change in momentum of a body is equal to the impulse experienced by a body.
Explanation:
Considering the equation
F • t = m • Δ v
Here,
m • Δ v is basically a change in momentum of a body which is equal to the mass of the object multiplied by the change in its velocity.
Also,
- F • t is called the impulse of the object.
In the formula, it is clear that the impulse experienced by a body during the collision is basically a change in the momentum of the body.
In other words, the change in momentum of a body is equal to the impulse experienced by a body.
Therefore, we conclude that the change in momentum of a body is equal to the impulse experienced by a body.
An example of a mechanical wave is a sound wave