Answer: the electrons remain around the atomic nuclei due to the existence of a positive charge on the nuclei that, of course, atract the negative charged electrons. The protons are the paricles in the nuclei that hold the positive charge.
Justification:
First, I wish to explaing the sense of the question. The question arises because given that the electrons have negative electric charge how is that they do not repeal each other to the point that they end leaving the nucleous of the atom alone.
This is you know that equal charges repel each other, so how is it that the electrons stand around the nucleous instead of separateing and levaing the atomic nucleous alone.
The answer is due to the existence of a positive charge on the nuclei that, of course, atract the negative charged electrons. That positive charge is the protons.
The protons are particles in the atomic nuclei that are positive charged and they exert the right attractive force upon the electrons to permit them stay in the orbitals (regions of the space around the nuclei of the atoms where the electrons are found).
B and d will work out and a and c will also work out
Answer:
CH₅N
Explanation:
In the combustion, all of the C in the compound was used to produce CO₂ in a 1:1 ratio. Thus, the moles of CO₂ (MW 44.01 g/mol) produced equals the moles of C in the compound:
(44.0 g)(mol/44.01g) = 0.99977 mol CO₂ = 0.99977... mol C
Similarly, all of the H in the compound was used to produce H₂O in a ratio of 2H:1H₂O. The moles of H₂O (MW 18.02 g/mol) produced was:
(45.0 g)(mol/18.02g) = 2.497...mol H₂O
Moles of H is found using the molar ratio of 2H:1H₂O:
(2.497...mol H₂O)(2H/1H₂O) = 4.994...mol H
The ratio of H to C in the compound is:
(4.994...mol H)/(0.99977... mol C) = 5 H:C
Some NO₂ was produced from the N in the compound. Assuming a 1:1 ratio of C:N, the simplest empirical formula is: CH₅N.
Answer:
the name for NO is nitrogen monoxide
Explanation:
The three sub atomic particles are;
Neutrons, Electrons and Protons
Hydrogen - H
Neutrons: 0
Electrons: 1
Protons: 1
Deuterium - D
Neutrons: 1
Electrons: 1
Protons: 1
Tritium - T
Neutrons: 2
Electrons: 1
Protons: 1