The reaction that represents the half-reaction of lead Pb is
Pb2+(aq) + 2e- → Pb(s)
and the SRP value on electric potential table is -0.13V.
To find the overall potential of a reaction, two half reactions can be added
together:
Oxidation: Fe(s) → Fe2+(aq) + 2e- +0.44V
Reduction: Pb2+(aq) + 2e- → Pb(s) - 0.13 V
Overall reaction: Fe(s) + Pb2+(aq) → Pb(s) + Fe2+(aq) +0.31V
This positive voltage for the overall reaction is spontaneous.
Answer: Option (A) is the correct answer.
Explanation:
Rate of diffusion is defined as the total movement of molecules from a region of higher concentration to lower concentration.
The interaction between medium and the material is responsible for the rate of diffusion of a material or substance.
A small concentration gradient means small difference in the number of molecules taking part in a reaction. So, when there no large difference between the concentration then there won't be much difference in the rate of diffusion of a material.
Whereas a higher concentration of molecules will lead to more number of collisions due to which frequency of molecules increases. Therefore, rate of diffusion will also increase.
Small molecule size will also lead to increases in rate of diffusion. This is because according to Graham's law rate of diffusion is inversely proportional to molar mass of an element. Hence, smaller size molecule will have smaller mass. As a result, rate of diffusion will be more.
High temperature means more kinetic energy of molecules due to which more number of collisions will be there. Hence, rate of diffusion will also increase.
Thus, we can conclude that out of the given options a small concentration gradient is least likely to increase the rate of diffusion.
Explanation:
The given data is as follows.
= 100 mm Hg or
= 0.13157 atm
=
= (1080 + 273) K = 1357 K
=
= (1220 + 273) K = 1493 K
= 600 mm Hg or
= 0.7895 atm
R = 8.314 J/K mol
According to Clasius-Clapeyron equation,

![log(\frac{0.7895}{0.13157}) = \frac{\Delta H_{vap}}{2.303 \times 8.314 J/mol K}[\frac{1}{1357 K} - \frac{1}{1493 K}]](https://tex.z-dn.net/?f=log%28%5Cfrac%7B0.7895%7D%7B0.13157%7D%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B2.303%20%5Ctimes%208.314%20J%2Fmol%20K%7D%5B%5Cfrac%7B1%7D%7B1357%20K%7D%20-%20%5Cfrac%7B1%7D%7B1493%20K%7D%5D)
![log (6) = \frac{\Delta H_{vap}}{19.147}[\frac{(1493 - 1357) K}{1493 K \times 1357 K}]](https://tex.z-dn.net/?f=log%20%286%29%20%3D%20%5Cfrac%7B%5CDelta%20H_%7Bvap%7D%7D%7B19.147%7D%5B%5Cfrac%7B%281493%20-%201357%29%20K%7D%7B1493%20K%20%5Ctimes%201357%20K%7D%5D)
0.77815 = 
=
J/mol
= 
= 221.9 kJ/mol
Thus, we can conclude that molar heat of vaporization of substance X is 221.9 kJ/mol.
Answer:
c. The reaction will proceed rapidly from left to right.
Explanation:
The variation of the free Gibbs energy doesn't tell anything about the speed of reaction.
On the other hand, when ΔGo is negative: the reaction is spontaneous, thermodynamically favourable, and the products are more stable than the reactants
I am not all understood but for the school to earn money you can:
make
--a raffle
--lotto
-- yard sale
-- class photo
-- origami for sale or something
-- buffet or food sale (example all Friday ice cream sale, 2 livre ice cream)