Answer:
See explanation below
Explanation:
In this case we have reaction of addition. In this case a diene reacting with an acid as HBr. This reaction is known as Hydrohalogenation, and, as we have a diene, this kind of reaction can be done as 1,4 addition. Which means that the reaction will be undergoing with an adition in the carbon 1, and carbon 4.
At room temperature we can expect that this reaction can be done in thermodynamic conditions, Now, as the problem states that is forming 4 products, we can expect products of a 1,2 addition too. This product can be formed if the reaction is taking place in the most stable carbocation, and then, by resonance, we can expect the 1,4 product too.
Now, the HBr can be attacked by the double bond of the first position, giving two possible products or by the double bond of the third position giving the other two products. These products are all possible, obviously the most stable will be the major of all of them, but the other three are perfectly possible. One product is formed without doing much, and the other by resonance. Same happens with the other double bond.
In the picture below, you have the mechanism for all the 4 products.
Hope this helps
So the equation is balanced, meaning they have the smallest amounts of each element in the reactants to create the products.
So, 2 moles of H2S (the coefficient) contributes to 2 moles Ag2S, which is why the ratio is 2:2.
I hope that made sense.
Answer:
c) 387g
Explanation:
Water;
Mass = 250g
Specific heat = 4.184
Initial Temp, T1 = 25 + 273 = 298K
Final Temp, T2 = 35 + 273 = 308K
Heat = ?
H = mc(T2 - T1)
H = 250 * 4.184 (308 - 298)
H = 10460 J
Iron;
Initial Temp, T2 = 95 + 273 = 368K (Upon converting to kelvin temperature)
Mass = ?
Final Temp, T1 = 35 + 273 = 308
Heat = 10460 (Heat lost by iron is qual to heat gained by water)
Specific heat = 0.45
H = mc(T2-T1)
M = 10460 / [0.45 (308 - 368)]
M = 10460 / 27
M = 387g
Answer:
Explanation:
The nitrates of Bi,Sn and Cd is ruled out because their sulfides are insoluble in acidic medium.
Nitrates of Ni or Co may be present because their sulfides are insoluble in basic medium. The presence of other nitrates are ruled out.