To answer this question, you need to know the concept of half-life, which is how a radioactive material decreases in mass over time.
The half life of U-235 is 703.8 million years. The first part of this problem is to find the scale factor. To do this, divide the time that has past by the half life, like this:

Now, take this scale factor and multiply it by the current mass, like this:

This number is what you add to the current mass to get the original mass. That is because the scale factor showed us that it was just over one half life. Since after one half life, the mass is cut in half, and this is over one half life, when we add to the original it will be a little over double. This equation illustrates the final addition:

I hope this helped you. Fell free to ask any further questions.
1.25 g x 22.4 l / 1 mol = 28 g/mol
The true statement about the balanced equations for nuclear and chemical changes is; both are balanced according to the total mass before and after the change.
A basic law in science is called the law of conservation of mass. Its general statement is that mass can neither be created nor destroyed.
Both in chemical and nuclear changes, mass is involved and in both cases, the law of conservation of mass strictly applies.
This means that for both chemical and nuclear changes; total mass before reaction must be equal to total mass after reaction.
Hence, both reactions are balanced according to the total mass before and after the change.
Learn more: brainly.com/question/22064431
Answer:
D) CN⁻
Explanation:
Hund's Rule of Maximum Multiplicity state that electrons go into degenerate orbitals of sub-levels (p,d, and f ) singly before pairing commences. Hund's rule is useful in determining the number of unpaired electrons in an atom. As such, it explains some magnetic properties of elements.
An element whose atoms or molecules contain unpaired electrons is paramagnetic. i.e., weakly attracted to substances in a magnetic field.
On the other hand, the element whose atoms or molecules are filled up with paired electrons is known as diamagnetic, i.e., not attracted by magnetic substances.
According to the molecular orbital theory, the diamagnetic molecule is CN⁻ because of the absence of unpaired electrons.
Hello,
The answer is option C <span>homogeneous mixture.
Reason:
The answer is option C because you can find </span><span>homogeneous mixtures anywhere for example: Vinegar. Its not option A because suspension is usually in elements but as not a mixture. Its not option B because a colloid is a measurement tool that allows to make compounds (mixtures).Its also not option D because those type o mixtures are hard to find in extreme weather conditions.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit </span>