When dT = Kf * molality * i
= Kf*m*i
and when molality = (no of moles of solute) / Kg of solvent
= 2.5g /250g x 1 mol /85 g x1000g/kg
=0.1176 molal
and Kf for water = - 1.86 and dT = -0.255
by substitution
0.255 = 1.86* 0.1176 * i
∴ i = 1.166
when the degree of dissociation formula is: when n=2 and i = 1.166
a= i-1/n-1 = (1.166-1)/(2-1) = 0.359 by substitution by a and c(molality) in K formula
∴K = Ca^2/(1-a)
= (0.1176 * 0.359)^2 / (1-0.359)
= 2.8x10^-3
Answer:
[HF]₀ = 0.125M
Explanation:
NaOH + HF => NaF + H₂O
Adding 20ml of 0.200M NaOH into 25ml of HF solution neutralizes 0.004 mole of HF leaving 0.004 mole NaF in 0.045L with 0.001M H⁺ at pH = 3. This is 0.089M NaF and 0.001M HF remaining.
=> 45ml of solution with pH = 3 and contains 0.089M NaF from titration becomes a common ion problem.
HF ⇄ H⁺ + F⁻
C(eq) [HF] 10⁻³M 0.089M (<= soln after adding 20ml 0.200M NaOH)
Ka = [H⁺][F⁻]/[HF]₀ => [HF]₀ = [H⁺][F⁻]/Ka
[HF]₀ = (0.001)(0.089)/(7.1 x 10⁻⁴) M = 0.125M
Answer:
0.3808
Explanation:
number of moles,n=Conc.XVol.
hence 0.85X0.448
Answer:
A
Explanation:
Because Rainwater can get acidic because of the carbonic acid that it contains
Answer:
He concluded that atoms contain small negatively charged particles that are called electrons.