Answer:
Explanation:
The sum of kinetic and potential energy is the mechanical energy of the system. Assuming the energy of the system is conserved, which it is in your case, then the initial mechanical energy will equal the final mechanical energy. This relationship is very useful in mechanics.
Answer:
a)The direction the frictional force will acts is in the positive x direction.
Explanation:
a)The direction the frictional force will acts is in the positive x direction
b)in the horizontal direction, the total force F(total) is equal to 4times the frictional force in the wheel.
F(total)=4f
''f'' is taken as the frictional force.
c)4times the normal force on each wheel minus the acceleration equals zero i.e 4N(wheel)-a=0
=4N(wheel)-mg=0
d) torque is the force that tends to bend rotation
ζ=rf
but acceleration=4×frictional force
cross multiply
f=ζ/r
f=ma/4
ma/4=ζ/r
a=4ζ/r
Answer:
Average force, F = 286.72 N
Explanation:
Given that,
Mass of the baseball, m = 140 g = 0.14 kg
Speed of the ball, v = 32 m/s
Distance, h = 25 cm = 0.25 m
We need to find the average force exerted by the ball on the glove. It is solved using the conservation of energy as :

F = mg



F = 286.72 N
So, the average
force exerted by the ball on the glove is 286.72 N. Hence, this is the required solution.

Explanation:
Natural length of a spring is
. The spring is streched by
. The resultant energy of the spring is
.
The potential energy of an ideal spring with spring constant
and elongation
is given by
.
So, in the current problem, the natural length of the spring is not required to find the spring constant
.

∴ The spring constant of the spring = 