The correct answer is A. Solid Rock
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
Answer:
70 cm
Explanation:
0.5 kg at 20 cm
0.3 kg at 60 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)

The position of the third mass of 0.6 kg is at 20+50 = 70 cm
Answer:
15.3 m/s
Explanation:
Radius of orbit= 6400+6300 = 12700 km
Circumference of orbit= 2*(22/7)*12700 =79796.45*10^3 m
Now,
Speed= Distance / Time
= 79796.45*10^3/(24*60*3600)
= 15.3 m/s
Answer:
The electric potential will be "259.695 volt".
Explanation:
In the given question, the figure is not provided. Below is the attached figure given.
Given:





Now,
At point P, the electric potential will be:
⇒ 
By putting values, we get
⇒ ![=9\times 10^9 [\frac{6.39\times 10^{-9}}{0.40} +\frac{3.22\times 10^{-9}}{0.25} ]](https://tex.z-dn.net/?f=%3D9%5Ctimes%2010%5E9%20%5B%5Cfrac%7B6.39%5Ctimes%2010%5E%7B-9%7D%7D%7B0.40%7D%20%2B%5Cfrac%7B3.22%5Ctimes%2010%5E%7B-9%7D%7D%7B0.25%7D%20%5D)
⇒ 