The equation (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:
Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
- : is the initial velocity of the<em> lab cart </em>
- : is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
- : is the final velocity of the<em> lab cart </em>
- : is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:
When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:
Therefore, the equation represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Sokka is here to help!!
The answer is...
<h2>D. Counter-arguments lead to circular logic in your argument.</h2>
Because, I am right. :)
Hopefully, this helps you!!
Answer:
4 m/s
Explanation:
speed = distance/time
speed= 20/5 = 4
similarly for all no. the answer is constant,i.e. 4