I think the distance that should be used is the distance that one expects to be from the game you are hunting. Before taking a shotgun for a gobbler or even for ducks or other animals, you need to see how your gun performs by patterning it at various ranges with the load you want to use.
Answer:
if you slide a hockey puck on ice, it will eventually stop, because of friction on the ice
kite when the wind changes can be described by the first law
Explanation:
if you slide a hockey puck on ice, it will eventually stop, because of friction on the ice
kite when the wind changes can be described by the first law
Answer:
a)F=3 x 10⁻⁷ N
b)x=2.405 m
Explanation:
Given that
m₁=295 kg
m₂=595 kg
d= 4.1 m
a)
m₃=63 kg
r=d/2 = 2.05 m
The force between the mass m₁ and m₃

by putting the values


F₁₃=2.94 x 10⁻⁷ N
The force between the mass m₂ and m₃
by putting the values


F₂₃=5.94 x 10⁻⁷ N
The net force F
F= F₂₃- F₁₃
F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N
F=3 x 10⁻⁷ N
b)
Lest take at distance x from mass m₂ net force is zero.


Form above two equation



x²=2.01(4.1-x)²
x=1.42 (4.1-x)
x=5.82 - 1.42x
x=2.405 m
Answer:
a). M = 20.392 kg
b). am = 0.56
(block), aM = 0.28
(bucket)
Explanation:
a). We got N = mg cos θ,
f = 
= 
If the block is ready to slide,
T = mg sin θ + f
T = mg sin θ +
.....(i)
2T = Mg ..........(ii)
Putting (ii) in (i), we get



M = 20.392 kg
b).
.............(iii)
Here, l = total string length
Differentiating equation (iii) double time w.r.t t, l, h and h' are constants, so


.....................(iv)
We got, N = mg cos θ

∴ 
................(v)
Mg - 2T = M

(from equation (iv))
.....................(vi)
Putting (vi) in equation (v),

![$\frac{g\left[\frac{M}{2}-m \sin \theta-\mu_K m \cos \theta\right]}{(\frac{M}{4}+m)}=a_m$](https://tex.z-dn.net/?f=%24%5Cfrac%7Bg%5Cleft%5B%5Cfrac%7BM%7D%7B2%7D-m%20%5Csin%20%5Ctheta-%5Cmu_K%20m%20%5Ccos%20%5Ctheta%5Cright%5D%7D%7B%28%5Cfrac%7BM%7D%7B4%7D%2Bm%29%7D%3Da_m%24)
![$\frac{9.8\left[\frac{20.392}{2}-10(\sin 30+0.5 \cos 30)\right]}{(\frac{20.392}{4}+10)}=a_m$](https://tex.z-dn.net/?f=%24%5Cfrac%7B9.8%5Cleft%5B%5Cfrac%7B20.392%7D%7B2%7D-10%28%5Csin%2030%2B0.5%20%5Ccos%2030%29%5Cright%5D%7D%7B%28%5Cfrac%7B20.392%7D%7B4%7D%2B10%29%7D%3Da_m%24)

Using equation (iv), we get,

Answer:
v = 19.6 m/s
Explanation:
Height of building = 30.6 m.
Height of window from the ground level= 10.7 m.
Acceleration due to gravity = 9.8 
At initial condition ball at rest condition so u= 0 m/s.
Lets take when passes through the window ,velocity is v.
Here acceleration is constant so we can apply motion equation .
We know that
v= u + a t
So by putting the values
v = 0 +9.8 x 2
v = 19.6 m/s
So the velocity of ball is 19.6 m/s when passes through the window after 2 s.