Answer:
C. 100
D.3
E. 33.3
Explanation:
C. Mechanical Advantage=Load / Effort
= 200N
--------
100N
Therefore,. = 100
D. I. Velocity Ratio= distance moved by the effort / distance moved by load
= 30cm/10cm
= 3
II. Efficiency= M.A / V.R
= 100/3
= 33.33
Answer:

Explanation:
As we know that train is initially moving with the speed

now we know that

now the final speed of the train when it crossed the crossing


now we can use kinematics here



Now the time to cross that junction is given as



Answer:
The answer to your question is: letter D.
Explanation:
a.The mass that a mole of substance has, measured in grams per mole. Density is not measure in moles, so this is not the correct answer.
b.The amount of substance dissolved in a liquid, measured in moles per liter. The substance dissolved in a liquid must be measure in grams not in moles, so this answer is incorrect.
c.The mass of substance dissolved in a liquid, measured in grams per milliliter. I think that this definition is correct but is incomple, so this answer is wrong.
d.The ratio of a substance's mass to its volume, measured in grams per milliliter and also equivalent to grams per cubic centimeter. This is the right description to density, so this is the correct answer.
I’m not sure if you want some ideas but like if you go then eye colour hair colour and then genders?
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.