1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
12

An astronaut goes out for a space-walk at a distance above the earth equal to the radius of the earth. What is her acceleration

due to gravity at that point?
Physics
1 answer:
Lera25 [3.4K]3 years ago
7 0

Answer:\frac{g}{4}

Explanation:

Let m be the mass of Astronaut

M=mass of earth

G=Gravitational constant

R=radius of Earth

Force Exerted by Earth on Astronaut

F=\frac{GmM}{R^2}

acceleration due to gravity is =\frac{F}{m}=g

g=\frac{GM}{R^2}

When it is at r=2R

g'=\frac{GM}{(2R)^2}

g'=\frac{GM}{4R^2}=\frac{g}{4}  

You might be interested in
You can use any coordinate system you like in order to solve a projectile motion problem. To demonstrate the truth of this state
posledela

Answer:

a)  y₂ = 49.1 m ,    t = 1.02 s , b)   y = 49.1 m , t= 1.02 s

Explanation:

a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero

            v_{y}² = v_{oy}² - 2 g (y –yo)

The origin of the coordinate system is on the floor and the ball is thrown from a height

           y-yo = v_{oy}² /2 g
            y- 0 = 10.0²/2 9.8
            y - 0 = 5.10 m
            
The height from the ground is the height that rises from the reference system plus the depth of the ground from the reference system
             y₂ = 5.1 + 44
             y₂ = 49.1 m
Let's use the other equation to find the time
              [tex]v_{y} = v_{oy} - g t

              t = v_{oy} / g

              t = 10 / 9.8

              t = 1.02 s

b) the maximum height

            y- 44.0 = v_{y}² / 2 g

            y - 44.0 = 5.1

            y = 5.1 +44.0

            y = 49.1 m

The time is the same because it does not depend on the initial height

              t = 1.02 s

7 0
3 years ago
(a) what is the acceleration of two falling sky divers (mass 132 kg including parachute) when the upward force of air resistance
Komok [63]

As per the question the mass of two falling sky drivers is 132 kg.

First we have to calculate their acceleration.

Whenever a body falls freely under gravity,its acceleration is acceleration due to gravity i.e g whose value is 9.8 m/s^2.

The earth pulls the object with a force equal to the weight of the body.

Hence the force gravity  F=W= mg   [ here m is mass of the body]

Here m =132 kg.

Hence force of gravity F= mg

                                        =132 kg ×9.8 m/s^2

                                        =1293.6 kg m/s^2

                                         =1293.6 N      [ here N[newton] is the unit of force.]

As per the question the air resistance is one fourth of weight of the bodies.

Hence air resistance F' =1/4 mg

                                       =\frac{1}{4} *1293.6N

                                        =323.4 N

Here F acts in vertically downward direction while F' acts in vertically upward direction.

Hence the net force acting on the particle is F-F'.

                                                 F_{net} =1293.6N -323.4N

                                                         =970.2 N

From Newton's second law of motion we know that net force is the product of mass and acceleration i.e  

                                   F_{net} =ma  [Here a is the acceleration]

                                             a =\frac{F_{net} }{m}

                                                  = \frac{970.2}{132} m/s^2

                                                  =7.35 m/s^2

In the second question it has been told that they descend with uniform speed.hence acceleration of the two bodies will be zero.

 we know that F= ma

                           =m×0

                            =0 N

Hence they will not get any force when they will descend with a uniform speed.


4 0
3 years ago
8. Three grams of Bismuth-218 decay to 0.375 grams in one hour. What is the half-
Evgen [1.6K]

Answer: 0.333 h

Explanation:

This problem can be solved using the <u>Radioactive Half Life Formula</u>:  

A=A_{o}.2^{\frac{-t}{H}} (1)  

Where:  

A=0.375 g is the final amount of the material  

A_{o}=3 g is the initial amount of the material  

t=1 h is the time elapsed  

H is the half life of the material (the quantity we are asked to find)  

Knowing this, let's substitute the values and find h from (1):

0.375 g=(3 g)2^{\frac{-1h}{H}} (2)  

\frac{0.375 g}{3 g}=2^{\frac{-1h}{H}} (3)  

Applying natural logarithm in both sides:

ln(\frac{0.375 g}{3 g})=ln(2^{\frac{-1 h}{H}}) (4)  

-2.079=-\frac{1 h}{H}ln(2) (5)  

Clearing H:

H=\frac{-1h}{-2.079}(0.693) (6)  

Finally:

h=0.333 h This is the half-life of the Bismuth-218 isotope

4 0
4 years ago
To fill the medication prescription, what information must the pharmacy technician need to obtain? A. The name of the medication
shepuryov [24]
C. Patient info, name of med, dosage & route, special instructions, prescriber’s DEA#, and number of refills
3 0
3 years ago
Define the term “force”.
Aleonysh [2.5K]

Energy that is applied to an object.

--TheOneandOnly003

3 0
3 years ago
Read 2 more answers
Other questions:
  • The radius of the earth's very nearly circular orbit around the sun is 1.5 1011 m. find the magnitude of the earth's velocity, a
    7·1 answer
  • What must happen for an ion To form
    9·1 answer
  • Four charges 7 × 10−9 C at (0 m, 0 m), −9 × 10−9 C at (3 m, 3 m), 7 × 10−9 C at (1 m, 3 m), and −8 × 10−9 C at (−3 m, 2 m), are
    10·1 answer
  • A 1.5-m length of straight wire experiences a maximum force of 1.6 N when in a uniform magnetic field that is 1.8 T. 1) What cur
    10·1 answer
  • In orbit, gravity:
    9·1 answer
  • You split wood with an ax. How would you change the ax to make splitting the wood easier? You would increase mechanical advantag
    7·2 answers
  • A man jumps from a 45 m cliff into a large body of water. How long will he fall before he enters the wate
    13·1 answer
  • HELP I DONT HAVE MUCH TIME ILL time BRAINLIEST 10poINTSSSSSS HURYYYY
    14·2 answers
  • In a single movable pulley, a load of 500 N is lifted by applying 300 N effort. Calculate MA, VR and efficiency.​
    9·1 answer
  • A plane glides towards a ground-based radar dish. Radar locates the plane at a distance D = 22 km from the dish, at an angle θ =
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!