Complete Question
Part of the question is shown on the first uploaded image
The rest of the question
What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1 and q2 at x3 = -1.220 m ? Your answer may be positive or negative, depending on the direction of the force. Express your answer numerically in newtons to three significant figures.
Answer:
The net force exerted on the third charge is
Explanation:
From the question we are told that
The third charge is 
The position of the third charge is 
The first charge is 
The position of the first charge is 
The second charge is 
The position of the second charge is
The distance between the first and the third charge is


The force exerted on the third charge by the first is

Where k is the coulomb's constant with a value 
substituting values
The distance between the second and the third charge is


The force exerted on the third charge by the first is mathematically evaluated as
substituting values

The net force is
substituting values

Answer
Hertzsprung-Russell (HR) diagram is an essential tool used in stellar evolution. In the universe, there are several hundreds of billions of stars. Scientists use the tool, in differentiation, the billions of stars in the world from the sun. In the HR tool, there is plotting of the luminosity or energy output of a star, which is plotted on the X-axis of a graph against the absolute magnitude. The sun's magnitude is an absolute of +48, which, when plotted against its luminosity, helps in setting an apparent variance between the sun and any other star. Additionally, the sun has been identified as the primary star with a very high temperature. Hence the tool can locate the sun from other forms of stars. HR diagrams outline data such as temperature and luminosity or energy. However, star distance from the Erath is not a type of data represented in the charts.
Explanation:
Hope this helped you!
The half life of Carbon-14 is 5730 years, how many years would it take for 7/8 of the original amount to decay?
<span>Can somebody please help with this problem. I *think* I understand the basics of what a half life is. If I learned correctly, its the amount it takes for half of a sample to decay. It should also happen exponentially, 1/2 remaining after one half life, 1/4 after the second, 1/16 after the third etc. I'm still a little shaky though. Could somebody please clarify what exactly a half life is and how it can be determined (i.e. how to find the time it would take for 7/8 to decay) </span>
Answer:
The force due to air resistance is 256 N.
Explanation:
Given;
mass of the plane, m = 5 kg
applied force on the plane, Fa = 706 N
the net force on the plane, ∑F= 450 N
Let the force due to air resistance = Fr
The net force on the plane is given as;
Net force = applied force - force due to air resistance
∑F = Fa - Fr
Fr = Fa - ∑F
Fr = 706 - 450
Fr = 256 N.
Therefore, the force due to air resistance is 256 N.