Answer:
k = 1073.09 N/m
A = 0.05 m
Explanation:
Given:
- Time period T = 0.147 s
- maximum speed V_max = 2 m/s
- mass of the block m = 0.67 kg
Find:
- The spring constant k
- The amplitude of the motion A.
Solution:
- A general simple harmonic motion is modeled by:
x (t) = A*sin(w*t)
- The velocity of the above modeled SHM is:
v = dx / dt
v(t) = A*w*cos(w*t)
- Where A is the amplitude in meters, w is the angular speed rad/s and time t is in seconds.
- We can see that maximum velocity occurs when (cos(w*t)) maximizes i.e it is equal to 1 or -1. Hence,
- V_max = A*w
- Where w is related to mass of the object and spring constant k as follows,
w = sqrt ( k / m )
- The relationship between w angular speed and Time period T is:
w = 2*pi / T
- Equating the above two equations we have,
m*(2*pi / T)^2 = k
- Hence, k = 0.67*(2*pi / 0.157)^2
k = 1073.09 N / m
- So, amplitude A is:
A = V_max*sqrt ( m / k )
A = 2*sqrt ( 0.67 / 1073.09 )
A = 0.05 m
Answer:
12.24 m/s
Explanation:
Speed: This can be defined as the rate of change of distance with time. The S.I unit of speed is m/s.
Using the formula,
a = v/t................ Equation 1
Where a = acceleration of the sprinter, v = speed of the sprinter, t = time.
making v the subject of the equation,
v = at ................. Equation 2
Given: a = 5.1 m/s², t = 2.4 s.
Substitute into equation 2
v = 5.1(2.4)
v = 12.24 m/s.
Hence, the speed of the sprinter = 12.24 m/s
Explanation:
7.9x10^9 km is equal to
=7900000000km
<em>Please</em><em> </em><em>mark</em><em> </em><em>it</em><em> </em><em>as</em><em> </em><em>brainliast</em>
Answer:
wet farts, JK its condensation.
Answer: force is a push or pull that results in the movement of an object ..
Explanation:
Hope this helps you!!!!