Answer: "B" Changing Position
Great Question!
Explanation: <u><em>When a ball bounces to the ground it hits the ground with some energy. The amount of energy with which it hits the ground is kinetic energy. When it comes in the contact with the ground kinetic energy gets converted into potential energy. This potential energy again gets converted into kinetic energy and balls moves again from the ground and bounces multiple times. So, the ball ends up changing position</em></u>
<u><em /></u>
Answer:
4. 7.59276
Explanation:
Add up the x components:
Aₓ + Bₓ + Cₓ = 5 − 1.6 + 2.4 = 5.8
Add up the y components:
Aᵧ + Bᵧ + Cᵧ = -2.4 + 3.3 + 4 = 4.9
Use Pythagorean theorem to find the magnitude:
√(x² + y²)
√(5.8² + 4.9²)
√57.65
7.59276
Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)

Answer:10842.33m/s
Explanation:
F=qvBsine
V=f/(qBsine)
V=(3.5×10^-2)÷(8.4×10^-4×6.7×10^-3×sin35)
V=10842.33m/s