Answer:
It is in the oxidation of NADH to NAD + that lactate dehydrogenase (LDH) plays an important role. LDH catalyzes the following reaction The lactate then diffuses out of the cell and the NAD + is used to continue glycolysis.It is in this manner that the cell continues to produce energy under anerobic conditions.
Explanation:
Answer: 234.4K
Explanation:
Given that,
Original volume of gas (V1) = 5.00 L
Original temperature of gas (T1) = 20.0°C
[Convert 20.0°C to Kelvin by adding 273
20.0°C + 273 = 293K]
New volume of gas (V2) = 4.0L
New temperature of gas (T2) = ?
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
5.00L/293K = 4.0L/T2
To get the value of T2, cross multiply
5.00L x T2 = 293K x 4.0L
5.00L•T2 = 1172L•K
Divide both sides by 5.00L
5.00L•T2/5.00L = 1172L•K/5.00L
T2 = 234.4K
Thus, the new temperature of the gas is 234.4 Kelvin
Answer:
1. First
2. Third
3. Fourth
4.remain the same as
Explanation:
Given the reaction equation;
Rate= k[A] [B]^3
We can see that the order of reaction is first order with respect to reactant A and third order with respect to reactant B. This gives an overall fourth order reaction.
If the concentration of A is doubled and that of B is halved. The rate of reaction remains the same.
Special properties of water are its high heat capacity and heat of vaporization, its ability to dissolve polar molecules, its cohesive and adhesive properties, and its dissociation into ions that leads to generating pH. Understanding these characteristics of water helps to elucidate its importance in maintaining life.