Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
<span>Important information to solve the exercise :
Substance ΔHf (kJ/mol):
HCl(g)= −92.0 </span><span>kJ/mol
Al(OH)3(s)= −1277.0 </span><span><span>kJ/mol
</span> H2O(l)= −285.8 </span><span>kJ/mol
AlCl3(s) =−705.6 </span><span>kJ/mol
</span><span>Al(OH)3(s)+3HCl(g)→AlCl3(s)+3H2O(l)
reactants products
products- reactants:</span><span>
(−705.6) + (3 x −285.8) - ( −1277.0 ) - (3 x −92.0 ) = - 10.0 </span>kJ per mole at 25°C
<span>
</span>
I guess you could call them that. In chemistry, we call them Metalloids though.