Above is a potential energy curve of a reaction. It depicts conversion of reactant to product via transition state.
When a catalyst is added to the reaction system, energy barrier of reaction decreases.
It must be noted that energy barrier reaction is defined as energy difference between reactant and transition state.
In present case, energy of reactant is 200 kj, while that of transition state (in absence of catalyst) is 650 kj
Thus, energy barrier of reaction is 650 - 200 = 450 kj
<span>Hence, system must absorb 450 kj of energy for the reaction to start, if no catalyst was used</span>
Answer:electrons will be equally attracted to both
Explanation:
e2020
Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
Divide mass by the volume to find density.
B: produces energy for the cell