Answer:
where's the diagram?
Explanation:
the best answer is student A
Answer:
16.82 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm (P = 1.0 atm, STP conditions).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = mass/molar mass = (12.0 g)/(15.99 g/mol) = 0.7505 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 0.0°C + 273 = 273.0 K, STP conditions).
<em>∴ V = nRT/P</em> = (0.7505 mol)(0.0821 L.atm/mol.K)(273.0 K)/(1.0 atm) = <em>16.82 L.</em>
Answer:

Explanation:
Hello.
In this case, we can solve this problem by applying the Boyle's law which allows us to understand the pressure-volume behavior as a directly proportional relationship:

In such away, knowing the both the initial pressure and volume and the final volume, we can compute the final pressure as shown below:

Consider that the given initial pressure is also equal to Pa:

Which stands for a pressure increase when volume decreases.
Regards.
Answer:
C-H groups can form weak hydrogen bonds and such compounds are more likely to have hydrogen bond donor groups because the hydrogen group is highly polar which is bonded to a strongly electronegative atom such as carbon, nitrogen and oxygen.
As the atom bonded with hydrogen atom have an equivalent partial negative charge, so it can only accept H-bonds from other atoms.
Thus, c-h groups forming weak hydrogen bonds are more likely to be hydrogen bond donor group.