Answer:
C2H2O4
Explanation:
To get the molecular formula, we first get the empirical formula. This can be done by dividing the percentage compositions by the atomic masses. The percentage compositions are shown as follows :
C = 26.86%
H = 2.239%
O = 100 - ( 26.86 + 2.239) = 70.901%
We then proceed to divide by their atomic masses. Atomic mass of carbon is 12 a.m.u , H = 1 a.m.u , O = 16 a.m.u
The division is as follows:
C = 26.86/12 = 2.2383
H = 2.239/1 = 2.239
O = 70.901/16 = 4.4313
We now divide each by the smallest number I.e 2.2383
C = 2.2383/2.2383 = 1
H = 2.239/2.2383 = 1
O = 4.4313/2.2383 = 1.98 = 2
Thus, the empirical formula is CHO2.
To get the molecular formula, we use the molar mass .
(CHO2)n = 90
We add the atomic masses multiplied by n.
(12 + 1 + 2(16))n = 90
45n = 90
n = 90/45 = 2.
Thus , the molecular formula is C2H2O4
Answer:
Q = 30284.88 j
Explanation:
Given data:
Mass of ethanol = 257 g
Cp = 2.4 j/g.°C
Chnage in temperature = ΔT = 49.1°C
Heat required = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Now we will put the values in formula.
Q = 257 g× 2.4 j/g.°C × 49.1 °C
Q = 30284.88 j
Blood flowing into and out your heart makes your pulse
<span>Charles' law says "at a constant pressure, the volume of a fixed amount of gas is directly proportional to its absolute temperature".
V </span>α T
Where V is the volume and T is the temperature in Kelvin of the gas. We can use this for two situations as,
V₁/T₁ = V₂/T₂
V₁ = 2.00 L
T₁ = 40.0 ⁰C = 313 K
V₂ = ?
T₂ = 30.0 ⁰C = 303 K
By applying the formula,
2.00 L / 313 K = V₂ / 303 K
V₂ = (2.00 L / 313 K) x 303 K
V₂ = 1.94 L
Hence, the volume of the balloon at 30.0 ⁰C is 1.94 L
Answer:
41.45 mL
Explanation:
Applying the general gas equation,
PV/T = P'V'/T'............... Equation 1
Where P = Initial pressure of hydrogen, V = Initial volume of hydrogen, T= Initial Temperature of hydrogen, P' = Final pressure of hydrogen, V' = Final Volume of Hydrogen, T' = Final Temperature.
make V' the subject of the equation
V' = PVT'/TP'................ Equation 2
Given: P = 718 torr = (718×133.322) N/m² = 95725.196 N/m², V = 47.9 mL = 0.0479 dm³, T = 26 °C = (26+273) = 299 K, T' = 273 K, P' = 101000 N/m²
Substitute these values into equation 2
V' = ( 95725.196×0.0479×273)/(299×101000)
V' = 0.04145 dm³
V' = 41.45 mL