Answer:
3.2043 x 10²³
Explanation:
No. of Mole of lead (Pb) = 0.532 mol
No. of atoms of lead = ?
Solution:
Formula Used to calculate
no. of moles = numbers of particles (ions, molecules, atoms) /Avogadro's number
Avogadro's no. = 6.023 x10²³
So,
The formula could be written as
no. of atoms of lead Pb = no. of moles x 6.023 x10²³
Put the values in above formula
no. of atoms of lead Pb = 0.532 mol x 6.023 x10²³
no. of atoms of lead Pb = 3.2043 x 10²³
so 3.2043 x 10²³ atoms of lead are contained in 0.532 mole.
Answer : The value of activation energy for this reaction is 108.318 kJ/mol
Explanation :
The Arrhenius equation is written as:

Taking logarithm on both the sides, we get:
............(1)
where,
k = rate constant = 
Ea = activation energy = ?
T = temperature = 435 K
R = gas constant = 8.314 J/K.mole
A = pre-exponential factor = 
Now we have to calculate the value of rate constant by putting the given values in equation 1, we get:


Therefore, the value of activation energy for this reaction is 108.318 kJ/mol
An exothermic reaction is a type of reaction that dissipates heat as the reaction proceeds. This would mean that in a closed system, when a reaction proceeds and is endothermic, the temperature of the solution or the system would increase so as to maintain the equilibrium with the whole system.
Answer: it would release heat because the thermal energy it absorbed to become a gas. so it would release heat. hope this helps :)
Explanation: