<span>Synthesis, decomposition, single replacement and double replacement.</span>
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)
Answer:

Explanation:
![\Delta H_{rxn}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation.
So, ![\Delta H_{rxn}=[2mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[3mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{2}H_{5}OH)_{l}]-[3mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B2%7DH_%7B5%7DOH%29_%7Bl%7D%5D-%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[2mol\times -393.509kJ/mol]+[3mol\times -241.818kJ/mol]-[1mol\times -277.69kJ/mol]-[3mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B2mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B3mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-277.69kJ%2Fmol%5D-%5B3mol%5Ctimes%200kJ%2Fmol%5D)
or, 
Answer:
Explanation:
2Al + 3Cl2 --> 2AlCl3
Ag2O + Be -----> 2Ag + BeO
4K + O2 ---> 2K2O
CoP + 3NaBr ---> CoBr3 + Na3P
Si + Hg2S ---> SiS2 + Hg
6Li + Ni3N2 --- > 2Li3N + 3Ni
3Ca + 2K3N --> Ca3N2 + 6K
SnS2 + 2F2 --> SnF4 + 2S
The boiling point increase of a solution is a colligative property, which means that it is related with the solvent and the concentration of the solute, as per this formula:
ΔT = i * kb * m
Where, ΔT is the increase in the boiling point, i is the van't Hoof factor (which accounts for the numberof particles that are dissolved), kb is the boiling point and m the molality of the solution.
Gvien the normal boiling point of 100°C for pure water, ΔT = 101.4 °C - 100.0 °C = 1.4 °C.
Kb = 0.512 °C / m
m = 1.2 m
Therefore, i = ΔT / (kb * m) = 1.4°C / (0.512 °C/m * 1.2m) = 2.28
Answer: 2.28