The reaction is
CaC₂(s) + 2H₂O (l) -----> Ca(OH)₂ (s) + C₂H₂ (g)
As we have data of gas ethyne (or acetylene), C₂H₂
We can calculate the moles of acetylene and from this we can estimate the mass of calcium carbide taken
the moles of acetylene will be calculated using ideal gas equation
PV =nRT
R = gas constant = 0.0821 Latm/molK
T = 385 K
V = volume = 550 L
P = Pressure = 1.25 atm
n = moles = ?
n = PV /RT = 1.25 X 550 / 0.0821 X 385 = 21.75 mol
As per balanced equation these moles of acetylene will be obtained from same moles of calcium carbide
moles of calcium carbide = 21.75mol
molar mass of CaC₂ = 40 + 24 = 64
mass of CaC₂ = moles X molar mass = 21.75 X 64 = 1392g
Answer:
Some of them yes but some of them no.
Explanation:
When the tsunami moves across other bodies of water it initially gets bigger. When it is moving across the water it is picking up molecules as well as dropping them off. But the farther away the tsunami gets from the water the smaller it gets.
Answer:
Sp3 hybridization
Explanation:
The NH3 molecule, which consists of one lone pairs and three bond pair of electron on its valance shell due to lone pair bond pair repulsion makes bond angle of 107.5°resulting distorted tetrahedral geometry.
Hybridization =no. of bond pair +lone pair=3+1=4=sp3 hybridization
A standard solution is a solution (in this case sodium hydroxide) whose concentration (molarity) is known very precisely. <span>The molarity of the sodium hydroxide solution cannot be determined accurately because s</span>olid sodium hydroxide is highly hygroscopic (absorbs water from the air) and cannot be accurately weighed. Sodium hydroxide form sodium carbonate because it absorbs carbon
dioxide from the air.
<span>Conduction occurs when two object at different temperatures are in contact with each other. Heat flows from the warmer to the cooler object until they are both at the same temperature. Conduction is the movement of heat through a substance by the collision of molecules. At the place where the two object touch, the faster-moving molecules of the warmer object collide with the slower moving molecules of the cooler object. </span>