Answer:

Explanation:
Given


Required
Determine the speed of B w.r.t A
The question implies that, we determine the relative velocity of B w.r.t A
Because both trains are moving towards one another, the required velocity is a
both trains:
This is shown below:



I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
If a negative object is used to charge a neutral object, then both objects become charged negatively. In order for the neutral sphere to become negative, it must gain electrons from the negatively charged rod. A metal sphere is electrically neutral. It is touched by a positively charged metal rod.
As per impulse momentum theorem we know that

now here we will have

t = 1.30 ms
m = 0.144 kg

now we need to find final speed using above formula


so final speed is given as above
The answer is it increases the amount of solar
radiation that is redirected into space. Most of the particles emitted
from volcanoes cool the earth by covering entering solar radiation. The cooling
result can last for months to years contingent on the features of the eruption.