Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
Energy = Power x Time
Energy = 20W x 10s
Energy = 200 joules
Answer:that your subconscious is trying to tell you something
Explanation:
Answer:
0.012 N
Explanation:
The formula to apply is that adopted from the Ampere law which is;
F= μ* I₁*I₂*l /2πd where
F is force that one conductor exerts on the other.
μ = magnetic permeability of free space = 4π×10⁻⁷ T. m/A
I₁ = current in conductor one=10 A
I₂ = current in conductor two= 10 A
l= length of conductor= 3 m
d= distance between the conductors = 5 mm = 0.005 m
Applying the values in the equation
F= 4π×10⁻⁷ *10*10*3 / 2π*0.005
F= 6 * 10⁻⁵ / 0.005
F=0.012 N
Answer:
(c) The planet must have a mass about the same as the mass of Jupiter,
(d) The planet must be closer to the star than Earth is to the Sun.
Explanation:
Astrometry is the ideal method to detect high-mass planets that are close to their star. That is because the gravitational effect that it will have the planet over its host star will be greater. This effect can be seen as a wobble in the star as a consequence of how they orbit a common center of mass¹. The center of mass will be closer to the most massive object, So, in the case of an extrasolar planet with masses like Jupiter (Jovian), this point will be a little bit farther from the star, making the wobble more notable than in a system with a low-mass planet.
Key terms:
Astrometry: study of the position of the stars over time in the sky.
¹Center of mass: a geometrical point in which the mass from a whole system is summed.