Aluminum is 26.982 grams per mole, so 26.982/19.9 will give you the moles 1.3558794
<h2>Answer : Option C) Smaller volume - crowded particles - more collisions - high pressure</h2><h3>Explanation : </h3>
The kinetic molecular theory of gases explains that if there is small volume of gas there will be more crowding of the gas molecules inside the container. The crowded gas molecules will collide with each other and also with the walls of container as a result, exchange of energies will take place. Which will increase the pressure inside the container, and will raise the pressure than the initial pressure.
Answer:
The reactions free energy 
Explanation:
From the question we are told that
The pressure of (NO) is 
The pressure of (Cl) gas is 
The pressure of nitrosly chloride (NOCl) is 
The reaction is
⇆ 
From the reaction we can mathematically evaluate the
(Standard state free energy ) as

The Standard state free energy for NO is constant with a value

The Standard state free energy for
is constant with a value

The Standard state free energy for
is constant with a value

Now substituting this into the equation

The pressure constant is evaluated as

Substituting values


The free energy for this reaction is evaluated as

Where R is gas constant with a value of 
T is temperature in K with a given value of 
Substituting value
![\Delta G = -43 *10^{3} + 8.314 *298 * ln [0.0765]](https://tex.z-dn.net/?f=%5CDelta%20%20G%20%20%3D%20-43%20%2A10%5E%7B3%7D%20%2B%208.314%20%2A298%20%2A%20ln%20%5B0.0765%5D)


Answer:
The molar mass and molecular weight of Al(CH3CO2)3 is 204.1136.
Explanation:
When the salt AgI dissolves, it dissociates as follows;
AgI --> Ag⁺ + I⁻
molar solubility of salt is the amount of salt that can be dissolved in 1 L of solution
since the ions dissociated are in 1:1 molar ratio, the molar solubility of the ions are equivalent to the molar solubility of the salt.
ksp is the solubility product constant of the salt
ksp = [Ag⁺][I⁻]
ksp = (9.1 x 10⁻⁹ mol/L)²
ksp = 8.28 x 10⁻¹⁷