Evaporation occurs when water molecules on the surface gain enough energy to enter the atmosphere. However, stronger intermolecular forces between water molecules cause them to be strongly attracted to each other and to tend to stay in the liquid phase. When the temperature is raised (when heat is applied), more molecules gain the energy needed to escape these intermolecular forces and go into the vapor phase.
Therefore the best answer is D.
Molality is defined as 1 mole of a solute in 1 kg of solvent.
Molality=

Number of moles of solute, n=

Given mass of the nitrobenzene=0.2 g
Molar mass of the substance= 123.06 g mol⁻¹
Number of moles of nitrobenzene,

Number of moles of nitrobenzene, n= 0.0016 mol
Mass of 10.9 g of naphthalene in kg=0.0109

Molality= 0.146 m
Answer:
Explanation has been given below.
Explanation:
- Chloroform has three polar C-Cl bonds. Methylene chloride has two polar C-Cl bonds. So it is expected that chloroform should be more polar and posses higher dipole moment than methylene chloride.
- Two factors are liable for the opposite trend observed in dipole moments of methylene chloride and chloroform.
- First one is the number of hyperconjugative hydrogen atoms present in a molecule. Hyperconjugation occurs with vacant d-orbital of Cl atom. Hyperconjugation amplifies charge separation in a molecule resulting higher dipole moment.
- Methylene chloride has two hyperconjugative hydrogen atoms and chloroform has one hyperconjugative hydrogen atom.Therefore methylene chloride should have higher charge separation as compared to chloroform.
- Second one is induction of opposite polarity in a C-Cl bond by another C-Cl bond in a molecule. Higher the opposite induction of polarity, lower the charge separation in a molecule and hence lower the dipole moment of a molecule.
- Chloroform has three C-Cl bonds and methylene chloride has two C-Cl bonds. Therefore opposite induction is higher for chloroform resulting it's lower dipole moment.
Answer:
10.32 moles of ammonia NH₃
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 6.21×10²⁴ molecules
Number of mole of NH₃ =?
The number of mole of NH₃ can be obtained as follow:
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole
Therefore,
6.21×10²⁴ molecules = 6.21×10²⁴ / 6.02×10²³
6.21×10²⁴ molecules = 10.32 moles
Thus, 6.21×10²⁴ molecules contains 10.32 moles of ammonia NH₃