Answer:
(c.) as the force of Earth's gravity on an object increases, the object's mass increases
Explanation:
Based on newton's law of gravitation "every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them".
It is mathematically expressed as:
F = 
F is the gravitational force on either particle
m₁ and m₂ are the masses
r is the distance between particles
G is the universal gravitation constant.
From this expression, we see that the force of earth's gravity is directly proportional to mass.
<span>Only if they have the same mass.</span>
Answer : The mass of ammonia present in the flask in three significant figures are, 5.28 grams.
Solution :
Using ideal gas equation,

where,
n = number of moles of gas
w = mass of ammonia gas = ?
P = pressure of the ammonia gas = 2.55 atm
T = temperature of the ammonia gas = 
M = molar mass of ammonia gas = 17 g/mole
R = gas constant = 0.0821 L.atm/mole.K
V = volume of ammonia gas = 3.00 L
Now put all the given values in the above equation, we get the mass of ammonia gas.


Therefore, the mass of ammonia present in the flask in three significant figures are, 5.28 grams.
Answer:
Lose two electrons.
Explanation:
Barium is present in group 2.
It is alkaline earth metal.
Its atomic number is 56.
Its electronic configuration is Ba₅₆ = [Xe] 6s².
In order to attain the noble gas electronic configuration it must loses its two valance electrons.
When barium loses it two electron its electronic configuration will equal to the Xenon.
The atomic number of xenon is 54 so barium must loses two electrons to becomes equal to the xenon.
Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180