Answer:
ΔH°f P4O10(s) = - 3115.795 KJ/mol
Explanation:
- P4O10(s) + 6H2O(l) ↔ 4H3PO4(aq)
- ΔH°rxn = ∑νiΔH°fi
∴ ΔH°rxn = - 327.2 KJ
∴ ΔH°f H2O(l) = - 285.84 KJ/mol
∴ ΔH°F H3PO4(aq) = - 1289.5088 KJ/mol
⇒ ΔH°rxn = (4)(- 1289.5088) - (6)(- 285.84) - ΔH°f P4O10(s) = - 327.2 KJ
⇒ ΔH°f P4O10(s) = - 5158.035 + 1715.04 + 327.2
⇒ ΔH°f P4O10(s) = - 3115.795 KJ/mol
Answer: 8.7 grams
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number of particles.
To calculate the moles, we use the equation:
As oxygen is in excess, Aluminium is the limiting reagent and limits the formation of products.
According to stoichiometry:
4 moles of aluminium give = 2 moles of
Thus 0.17 moles of aluminium give=
Mass of
Thus the mass of is 8.7 grams
Hydrogen is usually –1. This is INCORRECT. The oxidation number for H is +1.
Oxygen is usually –2. This is CORRECT.
A pure group 1 element is +1. This is INCORRECT. It does not follow. This will depend on the other elements and the overall charge.
A monatomic ion is 0. This is INCORRECT. Diatomic ion is 0.