1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
14

7. The pair of polygons is similar. Find the value of x.

Mathematics
1 answer:
ohaa [14]3 years ago
4 0
The polygons are said to be similar if and only if the ratio of the measures of their corresponding sides are equal. If we are to establish the equation by the definition given above that would be,

     15/10 = 60/x

The value of x from the equation is 40. Hence, the side measures 40. 

ANSWER: 40 

The answer is the last choice. 
You might be interested in
F(x) = x^2+3x-4 and g(x)=x-1
padilas [110]

Answer:y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2

Step-by-step explanation:

7 0
3 years ago
James rode k kilometers on his bike this week. Express the number of kilometers that Ivan rode on his bike in terms of k if he r
Amiraneli [1.4K]

Answer:

13 km/hr

Step-by-step explanation:

Speed = (distance covered) / (time to cover the distance)

   ( 8.45 km)   /   (0.65 hr)

   (8.45 / 0.65)  km/hr

4 0
3 years ago
If you answer this correctly i will cash app you 20 dollars ​
Law Incorporation [45]
225pi because I know ..
6 0
3 years ago
if a tree casts an 8 meter shadow, and the angle from the ground to the tree is 30 degrees, what is the approximate height of th
Virty [35]
Using SohCahToa, we can find the height of the tree. Let the tree height be h. 8m is adjacent to the 30° angle.
\tan(30)  =  \frac{h}{8}  \\ h = 8 \tan(30)  \\ h = 4.62
The answer is A) 4.6 m
3 0
3 years ago
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Other questions:
  • ( middle school 5th grade ) The plot below shows the amount of time spent on 5 math problems. If the total amount of time spent
    5·1 answer
  • HELP ASAP
    15·1 answer
  • The quotient of 8 decreased by a number divided by 5
    10·1 answer
  • Six students are working to simplify the expression shown.
    10·1 answer
  • If a data point has a corresponding z-score of -1.5, then it is one and a half standard deviations above the mean value. 1. True
    8·1 answer
  • Your Mum has saved £12,000 and has agreed to give you a share. Would you rather have 1 5 or 1 10
    5·2 answers
  • Please help me thanks
    5·2 answers
  • If the cross section shown is congruent to the base of the rectangular prism above, what is true about the cross
    14·1 answer
  • In ABC, if m find the measure of each angle.
    13·1 answer
  • What is the segment units of RT
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!