5) The relation between intensity and current appears linear for intensity of 300 or more (current = intensity/10). For intensity of 150, current is less than that linear relation would predict. This seems to support the notion that current will go to zero for zero intensity. Current might even be negative for zero intensity since the line through the points (300, 30) and (150, 10) will have a negative intercept (-10) when current is zero.
Usually, we expect no output from a power-translating device when there is no input, so we expect current = 0 when intensity = 0.
6) We have no reason to believe the linear relation will not continue to hold for values of intensity near those already shown. We expect the current to be 100 for in intensity of 1000.
8) Apparently, times were only measured for 1, 3, 6, 8, and 12 laps. The author of the graph did not want to extrapolate beyond the data collected--a reasonable choice.
L*w=area
(3x+21)*w=3x^2+33x+84
w=(3x^2+33x+84)/3x+21
(3(x+4)(x+7))/3(x+7)
w=x+4
Answer:To do so, she makes the measurements shown in the figure below.
Step-by-step explanation:
9514 1404 393
Answer:
see attached
Step-by-step explanation:
Polynomial long division is done the way any long division is done. Find a "partial quotient", subtract from the dividend the product of that partial quotient and the divisor. The result is a new dividend. Repeat until the degree of the dividend is less than that of the divisor.
__
In the attached, the "Hints" show you how the partial quotient is found, and they show you how the product of the partial quotient and divisor is found.
The partial quotient term is simply the ratio of the highest degree terms of dividend and divisor. (Unlike numerical long division, there is no guessing.)
__
The remainder is the dividend of lower degree than the divisor. As in numerical long division, the full quotient expresses the remainder over the divisor.
For example, 5 ÷ 3 = 1 r 2 = 1 + 2/3.
Your full quotient is (n+5) +1/(n-6).
Answer:
261.1
Step-by-step explanation:
Wizardry