<h3>
Answer:</h3>
Temperature is 529.164 K
<h3>
Explanation:</h3>
We are given
Number of moles of Ne (n) = 0.019135 moles
Volume (V) = 878.3 mL
Pressure (P) = 0.946 atm
We are required to calculate the temperature;
We can do this using the ideal gas law equation which is;
PV = nRT, where P is the pressure, n is the number of moles, V is the volume, R is the ideal gas constant (0.082057 Latm/mol/K) and T is the temperature.
From the equation;



Therefore, the temperature will be 529.164 K.
Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
Answer:
Ether
SN1 mechanism
Explanation:
The nucleophile in this reaction is CH3OH. It is a poor nucleopile. We already know that a poor nucleophile reacting with a tertiary alkyl halide often leads to the substitution product as the major product.
Also, the iodide ion is a good leaving group. This makes the SN1 substitution more likely yielding the ether as the major product as shown in the image attached.