<u>Answer:</u>
<em>1) ∆H is positive
Endothermic
</em>
<em>2)
Endothermic </em>
<em>3) Energy is absorbed
Endothermic
</em>
<em>4)
Exothermic
</em>
<em>5) ∆H is negtive
Exothermic
</em>
<em></em>
<u>Explanation:</u>
∆H is called as enthalpy change
It is also called as Heat of reaction
Energy is required for the bond to break a bond.
Energy is released when a bond is formed.

that is

We see in this equation, bonds between hydrogen and chlorine molecules gets broken and on the right side bond is formed in HCl.
If energy of products greater than energy of reactants then the reaction enthalpy change is endothermic .
If energy of products lesser than energy of reactants then the reaction enthalpy change is exothermic .
For example



(positive hence endothermic)



(negative hence exothermic)
Answer:5 moles ofCarbonmonoxide and 3.5 moles of oxygen gas.This in combine to yield carbon dioxide.
Explanation:
5C + 6O2----------5CO + 7/2O2.
When carbon combine with oxygen, carbon monoxide is formed first and it later recombine with oxygen to yield carbon dioxide.
Answer:
0.1066 hours
Explanation:
A common pesticide degrades in a first-order process with a rate constant (k) of 6.5 1/hours. We can calculate its half-life (t1/2), that is, the times that it takes for its concentration to be halved, using the following expression.
t1/2 = ln2/k
t1/2 = ln2/6.5 h⁻¹
t1/2 = 0.1066 h
The half-life of the pesticide is 0.1066 hours.
atomic mass=percentage of isotope a * mass of isotope a + percentage of isotope b * mass of isotope b+...+percentage of isotope n * mass of isotope n.
Data:
mass of isotope₁=267.8 u
percentage of isotope₁=90.3%
mass of isotope₂=270.9 u
percentage of isotope₂=9.7%
Therefore:
atomic mass=(0.903)(267.8 u)+(0.097)(270.9 u)=
=241.8234 u + 26.2773 u≈268.1 u
Answer: the mass atomic of this element would be 268.1 u
Milk
Explanation:
because milk is very thick youknow here I go