The molality of the solution = 17.93 m
<h3>Further explanation</h3>
Given
6.00 L water with 6.00 L of ethylene glycol(ρ=1.1132 g/cm³= 1.1132 kg/L)
Required
The molality
Solution
molality = mol of solute/ 1 kg solvent
mol of solute = mol of ethylene glycol
- mass of ethylene glycol :
= volume x density
= 6 L x 1.1132 kg/L
= 6.6792 kg
= 6679.2 g
- mol of ethylene glycol (MW=62.07 g/mol)
=mass : MW
=6679.2 : 62.07
=107.608
6 L water = 6 kg water(ρ= 1 kg/L)

In evaporation due to internal heat, kinetic energy of molecules increases and they come to the top and take out that heat with them when they evaporate thus causes cooling
in boiling as heat is given to the molecules so their kinetic energy increases and they start vibrating with great energy and thus causes heating
Answer:
109° 27'
Explanation:
The ammonium ion is tetrahedral in shape, all the HNH bonds are exactly at the tetrahedral bond angle since there are only bond pairs in the structure and no lone pairs. Recall that lone pairs decrease the bond angke from the ideal value in a tetrahedron due to higher repulsion.
Answer:
First choice: 2
Explanation:
There are 2 phosphorous (P) in the substance.
Ignore the strontium (Sr3) part because you are looking to isolate the P from (PO4)2.
Break the chemical equation apart to get 1 Phosphorous atom, and 4 Oxygen atoms.
Now, multiple 1 by 2 because that are 2 phosphate to get 2 phosphorous atoms.
Answer:
Explanation
=============
One
=============
Ca(OH)2 + 2HNO3 -----> Ca(NO3)2 + H2O
Focus on the NO3. This is an odd problem and you usually do not focus on the complex ion. But this one works easiest if you do.
The problem now is going to be the oxygens. There are 2 with the Calcium and only 1 free one going to the water. (The NO3 has been taken care of in the last step).
Ca(OH)2 + 2HNO3 -----> Ca(NO3)2 + 2H2O
Count the atoms. I think this equation is balanced.
atom Left Right Result
Ca 1 1 Balanced
O 8 8 Balanced
H 2 + 2 2*2 Balanced
N 2 2 Balanced
===========
Two
===========
CH4 + O2====> CO2 + H2O
Start with the hydrogens.
The right side requires a 2
CH4 + O2 ===> CO2 + 2H2O
Now look at the oxygens. There are 4 on the right. and only 2 on the left. You need to multiply O2 by 2
CH4 + 2O2 ===> CO2 + 2H2O
Each side has 1 Carbon 4 hydrogens and 4 oxygens. The equation is balanced.