Answer: b) The velocity vector is perpendicular to the acceleration vector; the acceleration vector is parallel to the net force vector.
Explanation: A change in velocity creates an acceleration. As the object rotates through the circular path it is constantly changing direction, and hence accelerating, which causes a constant force to act upon the object. This Force acts towards the center of curvature, directly toward the axis of rotation in a direction parallel to the acceleration of the body along the path. Because the object is moving perpendicular to the force, the path followed by the object is a circular one. Hence the velocity of the object is perpendicular to the acceleration.
Answer:
the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Explanation:
Given;
initial velocity of the airplane. u = 34.5 m/s
distance traveled by the airplane, s = 46,100 m
final velocity of the airplane, v = 40.7 m/s
The acceleration of the airplane is calculated from the following kinematic equation;
v² = u² + 2as

Therefore, the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Answer:
There are 756.25 electrons present on each sphere.
Explanation:
Given that,
The force of repression between electrons, 
Let the distance between charges, d = 0.2 m
The electric force of repulsion between the electrons is given by :




Let n are the number of excess electrons present on each sphere. It can be calculated using quantization of charges. It is given by :
q = ne


n = 756.25 electrons
So, there are 756.25 electrons present on each sphere. Hence, this is the required solution.
Answer:
A body is said to be moving with uniform speed, if it covers equal distances in equal intervals of time. ...
Answer:height above ground at which projectile have velocity
0.5v is (0.0375v^2)
Explanation:
Using Vf = Vi - gt
Where Vf is final velocity
Vi is initial velocity
g is the acceleration due to gravity
t is the time taken
So, 0.5v = v - gt
t = 0.05v
Therefore height h = vt - 0.5gt^2
Subtitute t
h = 0.05v^2 - 0.0125v^2
h = 0.0375v^2