Good morning.
We see that

The magnitude(norm, to be precise) can be calculated the following way:

Now the calculus is trivial:
Answer:
354.72 m/s
Explanation:
= mass of lead bullet
= specific heat of lead = 128 J/(kg °C)
= Latent heat of fusion of lead = 24500 J/kg
= initial temperature = 27.4 °C
= final temperature = melting point of lead = 327.5 °C
= Speed of lead bullet
Using conservation of energy
Kinetic energy of bullet = Heat required for change of temperature + Heat of melting

Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4
Answer: 103 km/hr
Explanation:
Guessed on ck-12 and it ended up being right.
Answer:
The answer to your question is 1800 Pa
Explanation:
Data
Weight = 2700 N
Area = 1.5 m²
Pressure = ?
Formula
Pressure = Force / Area
The Pressure is defined as the force exerted per unit area.
-Substitution
Pressure = 2700 / 1.5
-Result
Pressure = 1800 Pa
The units of pressure are Pascals (Pa)