Answer:
4. Both points have the same instantaneous angular velocity
Explanation:
Angular velocity is a measure of the the number of rotations per unit time. This does not depend on the radius of the wheel. Hence, all points on the wheel have the same angular velocity. This invalidates option 1.
The centripetal acceleration is given by the product to the square of the angular velocity and the radius or distance from the centre. A and B are located at different distances from the centre. Hence, they have different centripetal acceleration. This invalidates option 2.
The tangential acceleration depends on the linear velocity which itself is a product of the angular velocity and the distance from the centre. Hence, it is different for both points because they are at different distances from the centre.
Since both A and B are fixed points on the wheel, they move through equal angles in the same time. In fact, for any other fixed point, they all move through the same angle in the same time. This invalidates option 5.
Answer;
-A wave with the longest wavelength.
Explanation;
-Diffraction is the apparent of wave through,around small obstacles and the spreading out of wave past small openings. When thinking of diffraction of a wave think of shining a flashlight around a corner. The light bends around the corner but there is a place where it is dark and the light does not hit. Diffraction of a wave is basically the wave bending around an object then dispersing out.
-The amount of diffraction (the sharpness of the bending) increases with increasing wavelength and decreases with decreasing wavelength. When the wavelength of the waves is smaller than the obstacle, no noticeable diffraction occurs.
I found the Hydrolic system, im not sire if its helpful or not. I could only find that one, sorry if it doesn't help but I hope it does ^-^
The objects are far apart the weakest the result the two conditions
from the question you can see that some detail is missing, using search engines i was able to get a similar question on "https://www.slader.com/discussion/question/a-student-throws-a-water-balloon-vertically-downward-from-the-top-of-a-building-the-balloon-leaves-t/"
here is the question : A student throws a water balloon vertically downward from the top of a building. The balloon leaves the thrower's hand with a speed of 60.0m/s. Air resistance may be ignored,so the water balloon is in free fall after it leaves the throwers hand. a) What is its speed after falling for 2.00s? b) How far does it fall in 2.00s? c) What is the magnitude of its velocity after falling 10.0m?
Answer:
(A) 26 m/s
(B) 32.4 m
(C) v = 15.4 m/s
Explanation:
initial speed (u) = 6.4 m/s
acceleration due to gravity (a) = 9.9 m/s^[2}
time (t) = 2 s
(A) What is its speed after falling for 2.00s?
from the equation of motion v = u + at we can get the speed
v = 6.4 + (9.8 x 2) = 26 m/s
(B) How far does it fall in 2.00s?
from the equation of motion we can get the distance covered
s = (6.4 x 2) + (0.5 x 9.8 x 2 x 2)
s = 12.8 + 19.6 = 32.4 m
c) What is the magnitude of its velocity after falling 10.0m?
from the equation of motion below we can get the velocity
v = 15.4 m/s