Answer:
i only wrote this for points
Explanation:
The absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
<h3>Absence of external force on the outer space</h3>
The outer space is almost an absolute vacuum, because it's nearly empty. There is no matter such as air in the outer space that will provide an external force needed to change the velocity of the piece of rock.
From Newton's first law of motion, an object in a state of rest or uniform motion in a straight line, will continue in that state unless it is acted upon by an external force.
Thus, the absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
Learn more about outer space here: brainly.com/question/24701339
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
<span> In radioactive decay, an unstable atomic nucleus emits particles or radiation and converts to a different atomic nucleus. If the new nucleus is unstable, it will decay again, until eventually, a stable nucleus is formed. Such a sequence of nuclear decays forms a decay series.
The half-life of a radioactive substance is the time required for half of the atoms of a radioactive isotope to decay. If you have, say, 1 million atoms of a specific isotope in a sample, the time required for 500,000 of those atoms to decay is the half-life of that specific isotope. If you have 50 atoms of that isotope, 25 atoms will decay in the same amount of time.
Because the half-life is fixed for a specific isotope, it can be used to date objects. You compare the decay rate of an old object with the decay rate of a fresh sample. Nuclear decay is a first-order process and can be described by a specific mathematical equation, which depends on the decay rate and the half-life. Knowing those values, you can work back and determine the age of an object, as compared with a standard sample. Old objects will not have as much of a radioactive isotope in them as new objects, since the isotopes will have decayed over time in the old object.</span>