Answer:
a)Work done by fireman= 2.15 Btu
b) Time t= 0.86 sec
Explanation:
Given that
Weight = 280 lbf
We know that 1 lbf = 4.44 N
so 280 lbf = 1245.5 N
Weight =1245.5 N
Height h = 60 ft
We know that
1 ft = 0.3048 m
So 60 ft = 18.28 m
h =18.28 m
Power = 3.5 hp
We know that
1 hp =0.74 KW
So 3.5 hp = 2.61 KW
Power = 2.61 KJ/s
So the work done by fireman = Weight x h
Now by putting the values
Work done by fireman= 1245.5 x 18.28 J
Work done by fireman= 2267.74 J
Work done by fireman= 2.26774 KJ
We know that 1 Btu= 1.05 KJ
So 2.266 KJ = 2.15 Btu
Work done by fireman= 2.15 Btu
We know that ,rate of work is called power.
Power x time = work
2.61 x t = 2.26
So t= 0.86 sec
If speed = distance/time , then time = speed/distance.
So...
Speed of light = 3*10^8(m/s)
Average distance from Earth to Sun = 149.6*10^9(m)
Therefore, t=(3*10^8(m/s))/(149.6*10^9(m))
I hope this was a helpful explanation, please reply if you have further questions about the problem.
Good luck!
Answer:
The correct reaction force in response to Heidi's action force is:
c. The friction is equal to 660 N since the beam is not accelerating.
Explanation:
Heidi's action force does not affect the beam. Since friction resists the sliding or rolling of one solid object over another, there is no friction acting on the beam, in this respect. The reaction force is what makes the dog to move because it acts on it. According to Newton's Third Law of Motion, forces always come in action-reaction pairs. This Third Law states that for every action force, there is an equal and opposite reaction force. This means that the dog exerts some force on Heidi, as he pulls it "forward with a force of 9.55 N."
It can be measured by an ammeter.
Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.
v = momentum ÷ m
= (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s
kinetic energy = (mv∧2)÷2
= (9.1×10∧-31 × 1,153,846.154∧2) ÷2
= (1.21154×10∧-18) ÷ 2
= 6.05769×10∧-19 J