Step-by-step explanation:

First, let's move the
to the right-hand side so we can determine what constant we'll need on the left-hand side to complete the square:

From here, since the coefficient of the
term is
, we know the square will be
(since
it's half of
).
To complete this square, we will need to add
to both sides of the equation:



Now we can take the square root of both sides to figure out the solutions to
:


Answer:
t = 460.52 min
Step-by-step explanation:
Here is the complete question
Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 liters of a dye solution with a concentration of 1 g/liter. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 liters/min, the well-stirred solution flowing out at the same rate.Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.
Solution
Let Q(t) represent the amount of dye at any time t. Q' represent the net rate of change of amount of dye in the tank. Q' = inflow - outflow.
inflow = 0 (since the incoming water contains no dye)
outflow = concentration × rate of water inflow
Concentration = Quantity/volume = Q/200
outflow = concentration × rate of water inflow = Q/200 g/liter × 2 liters/min = Q/100 g/min.
So, Q' = inflow - outflow = 0 - Q/100
Q' = -Q/100 This is our differential equation. We solve it as follows
Q'/Q = -1/100
∫Q'/Q = ∫-1/100
㏑Q = -t/100 + c

when t = 0, Q = 200 L × 1 g/L = 200 g

We are to find t when Q = 1% of its original value. 1% of 200 g = 0.01 × 200 = 2

㏑0.01 = -t/100
t = -100㏑0.01
t = 460.52 min
Answer:
the answer is 1.3
Step-by-step explanation:
12+4.3 is 16.3
16.3-15 is 1.3
the equation 2x-4-1+x would be the answer
Because 2x+x = 3x and -4-1 = 5, the result would be 3x-5
Answer:
a
Step-by-step explanation: