A whole number that would support Cindys claim would be 2 because if u do the ,math it would be 8/24 which would be .333 repeating which is simplify to 1/3 and i do not know a number that would not work
Given:
• Total number of cans collected = 150
,
• Percent of cans that were soda = 58%
Let's find the number of other cans he collected.
To find the number of other cans, since the percent of soda is 58%, let's find the pecent of other cans.
Percent of other cans = 100% - 58% = 42%
The percent of other cans collected was 42%.
Now, to find the number of other cans collected, let's find 42% of the total number of cans collected 150.
We have:

Therefore, the number of other cans collected is 63 cans.
ANSWER:
63 cans
Answer:
Image below!
Step-by-step explanation:
<u>Plotting </u>
<u />
Step 1: determine the y-intercept

- plot the point as the first point on the graph
Step 2: Move 2 units up, and 1 unit left (keep repeating this process until you have reached the limit of the graph)
Step 3: Go to the other side of the graph of the first point (y-intercept)
- move 2 units down, and 1 unit right keep repeating this process until you have reached the limit of the graph)
<em>When you've completed this process, it should look like this:</em>
Answer:
Area of composite figure = 216 cm²
Hence, option A is correct.
Step-by-step explanation:
The composite figure consists of two figures.
1) Rectangle
2) Right-angled Triangle
We need to determine the area of the composite figure, so we need to find the area of an individual figure.
Determining the area of the rectangle:
Given
Length l = 14 cm
Width w = 12 cm
Using the formula to determine the area of the rectangle:
A = wl
substituting l = 14 and w = 12
A = (12)(14)
A = 168 cm²
Determining the area of the right-triangle:
Given
Base b = 8 cm
Height h = 12 cm
Using the formula to determine the area of the right-triangle:
A = 1/2 × b × h
A = 1/2 × 8 × 12
A = 4 × 12
A = 48 cm²
Thus, the area of the figure is:
Area of composite figure = Rectangle Area + Right-triangle Area
= 168 cm² + 48 cm²
= 216 cm²
Therefore,
Area of composite figure = 216 cm²
Hence, option A is correct.