Answer:
V = 65.81 L
Explanation:
En este caso, debemos usar la expresión para los gases ideales, la cual es la siguiente:
PV = nRT (1)
Donde:
P: Presion (atm)
V: Volumen (L)
n: moles
R: constante de gases (0.082 L atm / mol K)
T: Temperatura (K)
De ahí, despejando el volumen tenemos:
V = nRT / P (2)
Sin embargo como estamos hablando de condiciones normales de temperatura y presión, significa que estamos trabajando a 0° C (o 273 K) y 1 atm de presión. Lo que debemos hacer primero, es calcular los moles que hay en 50 g de amoníaco, usando su masa molar de 17 g/mol:
n = 50 / 17 = 2.94 moles
Con estos moles, reemplazamos en la expresión (2) y calculamos el volumen:
V = 2.94 * 0.082 * 273 / 1
<h2>
V = 65.81 L</h2>
Search Results
Featured snippet from the web
The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another. This means that a system always has the same amount of energy, unless it's added from the outside. ... The only way to use energy is to transform energy from one form to another.
Answer:
Morphology and phylogenetics revealed by fossils. Perhaps the strongest evidence to support the Cambrian evolutionary explosion of animal forms is the first clear appearance, in the Early Cambrian, of skeletal fossils representing members of many marine bilaterian animal phyla
Explanation:
also pls vote brainliest <3 :)))
Solution is here,
for initial case,
temperature(T1)=70°C=70+ 273=343K
vloume( V1) =45 L
for final case,
temperature( T2)=?
volume(V2)= 91.3 L
at constant pressure,
V1/V2 = T1/T2
or, 45/91.3 = 343/ T2
or, T2= (343×91.3)/45
or, T2=695.9 K = (695.9-273)°C=422.9°C
<span>The answer to question 2 is C. A magnifying glass is an example of a plano-convex lens, where one side of the lens is flat and the other is a convex curve. The answer to question 3 is either B or C. A converging lens is curved on both sides and so the rays of light coming out of it converge at a point, which is known as the focal point. When the object is inside the focal point, the image is real and inverted. If it is inside the focal point, the image is virtual and upright. Therefore the image in this question will be upright. The focal length is the distance between the image that is being magnified and the centre of the magnifying lens. A real image can only be formed when the object is further away from the lens than the focal length. Therefore, in this question, the image is virtual, as the object is closer to the lens than the focal length. The answer to question 4 is D because the index of refraction cannot be less than 1. The answer to question 5 is D because only concave mirrors can produce real images; other types produce virtual images. For question 6, the answer is D. In the rainbow, each of the colours refracts at a slightly different angle; red has the smallest refractive index and violet the largest. Of the options, orange is closest to red. For question 12, A is the answer. A higher operating temperature is not a reason fluorescent lamps are better than incandescent lamps because they have a lower operating temperature. Question 15: all of these are characteristics of different electromagetic waves. For question 18, B is true - special care must be taken when low illuminance is required to reduce glare. The answer to question 19 is B - a compound microscope makes use of two lenses. For question 20, the answer is 5 meters away. The illuminance (E) is equal to light intensity (I) divided by the square distance from the light source (d). Therefore, 4 = 100/d squared. To switch this around, d squared is equal to 100/4 = 25. Then find the square root of 25, which is 5.</span>