Answer:
0.84 mol
Explanation:
Given data:
Moles of ZnCl₂ produced = ?
Mass of Zn = 55.0 g
Solution:
Chemical equation:
2HCl + Zn → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 55.0 g/ 65.38 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of Zn with ZnCl₂ from balance chemical equation.
Zn : ZnCl₂
1 : 1
0.84 : 0.84
So from 55 g of Zn 0.84 moles of zinc chloride will be produced.
The kind of thermochemical equation represented below
that is
CaO(s) + H2O (l) = Ca(OH)2 (s) +65.2 kj
is exothermic ( answer B)
This is because its heat energy has a + sign meaning that heat is released by the reaction above.
Between 90 and 95 degrees Farenheit
Answer:
im sorry for being mean goodbye im get the real answer
Explanation:
Answer:
Adding a catalyst - More collisions every second and more collisions with enough energy to break bonds.
Increase in pressure - more collisions every second
Increase in temperature - more collisions every second with enough energy to break bonds
Explanation:
According to the collision theory, chemical reaction occurs as a result of collision between reacting particles. Only particles that possess energy above the activation energy of the reaction can collide and result in product formation. Collision of particles having energy less than the activation energy merely result in elastic collisions.
Adding a catalyst lowers the activation energy of the reaction. If the activation energy is lowered, more reactants collide and more of those collisions now have enough energy to break bonds.
When the temperature is increased, the particles become more energetic hence more collisions with energy to break bonds occur.
Increase in pressure brings the reactant particles into close proximity hence more collisions occur.