Answer:
DH
Step-by-step explanation:
Answer:
Lower limit: 113.28
Upper limit: 126.72
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Middle 60%
So it goes from X when Z has a pvalue of 0.5 - 0.6/2 = 0.2 to X when Z has a pvalue of 0.5 + 0.6/2 = 0.8
Lower limit
X when Z has a pvalue of 0.20. So X when 




Upper limit
X when Z has a pvalue of 0.80. So X when 




Answer:

Step-by-step explanation:
<u>Slope-intercept </u><u>form</u>
y= mx +c, where m is the slope and c is the y-intercept
Line p: y= -8x +6
slope= -8
The product of the slopes of perpendicular lines is -1. Let the slope of line q be m.
m(-8)= -1
m= -1 ÷(-8)
m= ⅛
Substitute m= ⅛ into the equation:
y= ⅛x +c
To find the value of c, substitute a pair of coordinates that the line passes through into the equation.
When x= 2, y= -2,
-2= ⅛(2) +c



Thus, the equation of line q is
.
Well you know you keep the 7. 1/3 well you see it as .3333 so just go 7.33 because 7.333 and since it's a 3 you keep it.