You do 1000 divide it by 10 which equals 100 W
Time = distance / speed
T = 125/ 5
T = 25 meters per second
a. 0.5 T
- The amplitude A of a simple harmonic motion is the maximum displacement of the system with respect to the equilibrium position
- The period T is the time the system takes to complete one oscillation
During a full time period T, the mass on the spring oscillates back and forth, returning to its original position. This means that the total distance covered by the mass during a period T is 4 times the amplitude (4A), because the amplitude is just half the distance between the maximum and the minimum position, and during a time period the mass goes from the maximum to the minimum, and then back to the maximum.
So, the time t that the mass takes to move through a distance of 2 A can be found by using the proportion

and solving for t we find

b. 1.25T
Now we want to know the time t that the mass takes to move through a total distance of 5 A. SInce we know that
- the mass takes a time of 1 T to cover a distance of 4A
we can set the following proportion:

And by solving for t, we find

Answer:
532 millimeters of mercury
Explanation:
In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:
1 atm = 760 mm Hg
Therefore, we can solve the problem by setting up the following proportion:

Solving for x, we find

The time elapsed since you stopped the stopwatch is 0.41 s.
<em>Your question is not complete, it seems to be missing the following information;</em>
"The velocity of the ant is 2 m/s"
The given parameters;
- velocity of the ant, v = 2 m/s
- change in position of the ant, Δx = 0.81 m
- time when the ant was noticed, = t₂
Velocity is defined as the change in displacement per change in time of motion of an object.

The time elapsed since you stopped the stopwatch is calculated as;

Thus, the time elapsed since you stopped the stopwatch is 0.41 s.
Learn more here: brainly.com/question/18153640